

Calibration Evaluation of the Cassini Radar Ring Observations

R. West, J. Cuzzi*, H. Zebker**, B. Stiles, M. Janssen

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

*NASA Ames Research Center, Moffet Field, CA

**Stanford University, Stanford, CA

February 1, 2021

Calibrated Radar Backscatter From Radar Ring Scans

ri_260 Real Aperture Backscatter

Note: sigma0 is normalized by area in the ring-plane and presented here in linear units. Unity sigma0 occurs when the received power equals what an isotropic scattering area would produce.

Earth Flyby Ground Track ESB Radiometer Data

Absolute Calibration Validation

- Cassini and TRMM
 backscatter (both Ku-band)
 co-located in space, time,
 and incidence angle.
- Same calibration constants used on Cassini radar Earth flyby data as all other Cassini radar results
- Same processing code used on Earth Flyby and Rings (some differences in geometry routines – flat ring plane vs planetary surface).
- Noise floor computed from time segmented Earth flyby data.
- Very good agreement on the absolute calibration.

Backup

Validation Summary

- Earth Flyby allows comparison with separately calibrated Earth orbiting radar systems including TRMM which also operated at 13.8 GHz.
- Same calibration constants (ADC conversion, attenuator values, transmit power, receiver gain) applied to Earth flyby measurements and Saturn system measurements.
- Same processing code used on Earth flyby and Rings.

Comparison of Real Aperture and Range Compressed Backscatter

ri_282 Real Aperture and Range Compressed Backscatter

ri_260 Real Aperture and Range Compressed Backscatter

Earth Flyby

Data colocated within 50 km and 1 deg. incidence

Ground-Based Rings Backscatter

Figure 2: Summary of "expected sense" single polarization radar reflectivity of the rings, σ OC or σ SL, for 3.5cm (asterisks) and 12.6cm (circles and square). Adapted from Nicholson et al 2005, Icarus.

This document has been reviewed and determined not to contain export controlled data.

Comparison of Averaged Real Aperture and Range Compressed Backscatter

ri_282 Averaged Real Aperture and Range Compressed Backscatter

ri_260 Averaged Real Aperture and Range Compressed Backscatter

Averaging taken over the radius extent of the beam footprint.